\(

\textbf{(A) }3705...\)

2015 Gauss Grade 8 Problem 24]]>

2015 Gauss Grade 8 Problem 25]]>

\(

\textbf{(A) }2112 \\

\textbf{(B) }2161 \\

\textbf{(C) }2063 \\

\textbf{(D) }2111 \\

\textbf{(E) }2113 \\

\)]]>

(An arithmetic sequence is a sequence in which each term after the first is obtained from the previous term by adding a constant. For example, 3, 5, 7, 9 are the first four terms of an arithmetic sequence.)

\(

\textbf{(A) }5...\)

2016 Gauss Grade 8 Problem 25]]>

\(

\textbf{(A) }22 \qquad

\textbf{(B) }26 \qquad

\textbf{(C) }24 \qquad

\textbf{(D) }21 \qquad

\textbf{(E) }23 \qquad

\)]]>

\(\textbf{(A) } \frac{1}{4} \qquad \textbf{(B) } \frac{5}{8} \qquad \textbf{(C) } \frac{11}{16} \qquad \textbf{(D) } \frac{3}{5} \qquad \textbf{(E) } \frac{3}{4} \)]]>

\(

\textbf{(A) }22.3 \\

\textbf{(B) }33.5 \\

\textbf{(C) }25.1 \\

\textbf{(D) }18.3 \\

\textbf{(E) }20.3 \\

\)]]>

• 180 black plates below 300 gold plates below 120 red plates...

2017 CEMC Gauss Contest Grade 8 Problem 25]]>

- C
- E
- E
- B
- A
- C
- A
- E
- A
- C
- C
- C
- B
- D
- A
- B
- D
- E
- D
- C
- B
- B
- E
- B
- C

\( \textbf {(A) } 33 \qquad \textbf {(B) } 35 \qquad \textbf {(C) } 37 \qquad \textbf {(D) } 39 \qquad \textbf {(E) } 41 \)]]>

\( \textbf {(A) } 16 \qquad \textbf {(B) } 24 \qquad \textbf {(C) } 32 \qquad \textbf {(D) } 48 \qquad \textbf {(E) } 64 \)]]>

\( \textbf {(A) } 30 \qquad \textbf {(B) } \frac{400}{11} \qquad \textbf {(C) } \frac{75}{2} \qquad \textbf {(D) } 40 \qquad \textbf {(E) } \frac{300}{7}\)]]>

\( \textbf {(A) } \frac{3}{2} \qquad \textbf {(B) } \frac{5}{3} \qquad \textbf {(C) } \frac{7}{4} \qquad \textbf {(D) } 2 \qquad \textbf {(E) } \frac{13}{4}\)]]>

\( \textbf{(A)}\ 26\qquad\textbf{(B)}\ 28\qquad\textbf{(C)}\ 30\qquad\textbf{(D)}\ 32\qquad\textbf{(E)}\ 34 \)]]>

\( \textbf {(A) } 33 \qquad \textbf {(B) } 34 \qquad \textbf {(C) } 36 \qquad \textbf {(D) } 38 \qquad \textbf {(E) } 39\)]]>

\( \textbf {(A) } 100(\frac{A-B}{B}) \\\textbf {(B) } 100(\frac{A+B}{B}) \\\textbf {(C) } 100(\frac{A+B}{A})\\ \textbf {(D) } 100(\frac{A-B}{A}) \\ \textbf {(E) } 100(\frac{A}{B})\)]]>

\( \textbf {(A) } \frac{b}{1080t} \qquad \textbf {(B) } \frac{30t}{b} \qquad \textbf {(C) } \frac{30b}{t}\qquad \textbf {(D) } \frac{10t}{b} \qquad \textbf {(E) } \frac{10b}{t}\)]]>

\(\frac{\frac{1}{w} + \frac{1}{z}}{\frac{1}{w} - \frac{1}{z}} = 2014.\)

What is \(\frac{w+z}{w-z}\)?

\(\textbf{(A) } -2014 \\\textbf{(B) } \frac{-1}{2014} \\\textbf{(C) } \frac{1}{2014} \\\textbf{(D) } 1 \\\textbf{(E) } 2014\)]]>

\( \begin{array}{lr}&ABBCB\\ +& BCADA\\ \hline & DBDDD\end{array} \)

\( \textbf{(A) }2\qquad\textbf{(B) }4\qquad\textbf{(C) }7\qquad\textbf{(D) }8\qquad\textbf{(E) }9 \)]]>

(1) two successive \(15\%\) discounts

(2) three successive \(10\%\) discounts

(3) a \(25\%\) discount followed by a \(5\%\) discount

What is the smallest possible positive integer value of \(n\)?

\( \textbf{(A)}\ \ 27\qquad\textbf{(B)}\ 28\qquad\textbf{(C)}\ 29\qquad\textbf{(D)}\ 31\qquad\textbf{(E)}\ 33 \)]]>

\( \textbf{(A)}\ \ 125,875,000\\\textbf{(B)}\ 201,400,000\\\textbf{(C)}\ 251,750,000\\\textbf{(D)}\ 402,800,000\\\textbf{(E)}\ 503,500,000 \)]]>

\( \textbf {(A) } 2\sqrt{3} \\ \textbf {(B) } 3\sqrt{3} \\\textbf {(C) } 1+3\sqrt{2} \\ \textbf {(D) } 2+2\sqrt{3} \\\textbf {(E) } 3+2\sqrt{3} \)]]>

\( \textbf {(A) } 26 \qquad \textbf {(B) } 27 \qquad \textbf {(C) } 36 \qquad \textbf {(D)...\)

2014 AMC 10B Problem 14]]>

\( \textbf{(A)}\ \ \frac{\sqrt{3}}{6}\qquad\textbf{(B)}\ \frac{\sqrt{6}}{8}\qquad\textbf{(C)}\...\)

2014 AMC 10B Problem 15]]>

\( \textbf {(A) } \frac{1}{36} \qquad \textbf {(B) } \frac{7}{72} \qquad \textbf {(C) } \frac{1}{9}\qquad \textbf {(D) } \frac{5}{36} \qquad \textbf {(E) } \frac{1}{6}\)]]>

\(\textbf{(A) } 2^{1002} \\\textbf{(B) } 2^{1003} \\\textbf{(C) } 2^{1004} \\\textbf{(D) } 2^{1005} \\\textbf{(E) }2^{1006}\)]]>

\( \textbf {(A) } 24 \qquad \textbf {(B) } 30 \qquad \textbf {(C) } 31\qquad \textbf {(D) } 33 \qquad \textbf {(E) } 35\)]]>

\(\textbf{(A) }\frac{1}{6}\qquad\textbf{(B) }\frac{1}{4}\qquad\textbf{(C) }\frac{2-\sqrt{2}}{2}\qquad\textbf{(D) }\frac{1}{3}\qquad\textbf{(E) }\frac{1}{2}\qquad\)]]>

\( \textbf {(A) } 8 \qquad \textbf {(B) } 10 \qquad \textbf {(C) } 12\qquad \textbf {(D) } 14 \qquad \textbf {(E) }16\)]]>

\( \textbf{(A) } 10\sqrt{6} \\\textbf{(B) } 25 \\\textbf{(C) } 8\sqrt{10} \\\textbf{(D) } 18\sqrt{2} \\\textbf{(E) } 26\)]]>